3.43 \(\int \frac{\sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{x} \, dx\)

Optimal. Leaf size=160 \[ \frac{\sqrt{a^2+2 a b x+b^2 x^2} (2 a+b x) \sqrt{c+d x^2}}{2 (a+b x)}+\frac{b c \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{2 \sqrt{d} (a+b x)}-\frac{a \sqrt{c} \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a+b x} \]

[Out]

((2*a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/(2*(a + b*x)) + (b*c*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(2*Sqrt[d]*(a + b*x)) - (a*Sqrt[c]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTan
h[Sqrt[c + d*x^2]/Sqrt[c]])/(a + b*x)

________________________________________________________________________________________

Rubi [A]  time = 0.119417, antiderivative size = 160, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.229, Rules used = {1001, 815, 844, 217, 206, 266, 63, 208} \[ \frac{\sqrt{a^2+2 a b x+b^2 x^2} (2 a+b x) \sqrt{c+d x^2}}{2 (a+b x)}+\frac{b c \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{2 \sqrt{d} (a+b x)}-\frac{a \sqrt{c} \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a+b x} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/x,x]

[Out]

((2*a + b*x)*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/(2*(a + b*x)) + (b*c*Sqrt[a^2 + 2*a*b*x + b^2*x^2]
*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(2*Sqrt[d]*(a + b*x)) - (a*Sqrt[c]*Sqrt[a^2 + 2*a*b*x + b^2*x^2]*ArcTan
h[Sqrt[c + d*x^2]/Sqrt[c]])/(a + b*x)

Rule 1001

Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :
> Dist[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])), Int[(g + h*x)^m*(b + 2*c*
x)^(2*p)*(d + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, f, g, h, m, p, q}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{x} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{\left (2 a b+2 b^2 x\right ) \sqrt{c+d x^2}}{x} \, dx}{2 a b+2 b^2 x}\\ &=\frac{(2 a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{2 (a+b x)}+\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int \frac{4 a b c d+2 b^2 c d x}{x \sqrt{c+d x^2}} \, dx}{2 d \left (2 a b+2 b^2 x\right )}\\ &=\frac{(2 a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{2 (a+b x)}+\frac{\left (2 a b c \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \frac{1}{x \sqrt{c+d x^2}} \, dx}{2 a b+2 b^2 x}+\frac{\left (b^2 c \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \frac{1}{\sqrt{c+d x^2}} \, dx}{2 a b+2 b^2 x}\\ &=\frac{(2 a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{2 (a+b x)}+\frac{\left (a b c \sqrt{a^2+2 a b x+b^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a b+2 b^2 x}+\frac{\left (b^2 c \sqrt{a^2+2 a b x+b^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{1-d x^2} \, dx,x,\frac{x}{\sqrt{c+d x^2}}\right )}{2 a b+2 b^2 x}\\ &=\frac{(2 a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{2 (a+b x)}+\frac{b c \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{2 \sqrt{d} (a+b x)}+\frac{\left (2 a b c \sqrt{a^2+2 a b x+b^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{d \left (2 a b+2 b^2 x\right )}\\ &=\frac{(2 a+b x) \sqrt{a^2+2 a b x+b^2 x^2} \sqrt{c+d x^2}}{2 (a+b x)}+\frac{b c \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c+d x^2}}\right )}{2 \sqrt{d} (a+b x)}-\frac{a \sqrt{c} \sqrt{a^2+2 a b x+b^2 x^2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a+b x}\\ \end{align*}

Mathematica [A]  time = 0.146834, size = 139, normalized size = 0.87 \[ \frac{\sqrt{(a+b x)^2} \left (\sqrt{d} \sqrt{\frac{d x^2}{c}+1} \left ((2 a+b x) \sqrt{c+d x^2}-2 a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )\right )+b \sqrt{c} \sqrt{c+d x^2} \sinh ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )\right )}{2 \sqrt{d} (a+b x) \sqrt{\frac{d x^2}{c}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[a^2 + 2*a*b*x + b^2*x^2]*Sqrt[c + d*x^2])/x,x]

[Out]

(Sqrt[(a + b*x)^2]*(b*Sqrt[c]*Sqrt[c + d*x^2]*ArcSinh[(Sqrt[d]*x)/Sqrt[c]] + Sqrt[d]*Sqrt[1 + (d*x^2)/c]*((2*a
 + b*x)*Sqrt[c + d*x^2] - 2*a*Sqrt[c]*ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]])))/(2*Sqrt[d]*(a + b*x)*Sqrt[1 + (d*x^2
)/c])

________________________________________________________________________________________

Maple [C]  time = 0.205, size = 94, normalized size = 0.6 \begin{align*} -{\frac{{\it csgn} \left ( bx+a \right ) }{2} \left ( 2\,\sqrt{d}\ln \left ( 2\,{\frac{\sqrt{c}\sqrt{d{x}^{2}+c}+c}{x}} \right ) \sqrt{c}a-\sqrt{d}\sqrt{d{x}^{2}+c}xb-2\,\sqrt{d}\sqrt{d{x}^{2}+c}a-\ln \left ( x\sqrt{d}+\sqrt{d{x}^{2}+c} \right ) bc \right ){\frac{1}{\sqrt{d}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x)

[Out]

-1/2*csgn(b*x+a)*(2*d^(1/2)*ln(2*(c^(1/2)*(d*x^2+c)^(1/2)+c)/x)*c^(1/2)*a-d^(1/2)*(d*x^2+c)^(1/2)*x*b-2*d^(1/2
)*(d*x^2+c)^(1/2)*a-ln(x*d^(1/2)+(d*x^2+c)^(1/2))*b*c)/d^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c} \sqrt{{\left (b x + a\right )}^{2}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)*sqrt((b*x + a)^2)/x, x)

________________________________________________________________________________________

Fricas [A]  time = 1.85328, size = 859, normalized size = 5.37 \begin{align*} \left [\frac{b c \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right ) + 2 \, a \sqrt{c} d \log \left (-\frac{d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{c} + 2 \, c}{x^{2}}\right ) + 2 \,{\left (b d x + 2 \, a d\right )} \sqrt{d x^{2} + c}}{4 \, d}, -\frac{b c \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) - a \sqrt{c} d \log \left (-\frac{d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{c} + 2 \, c}{x^{2}}\right ) -{\left (b d x + 2 \, a d\right )} \sqrt{d x^{2} + c}}{2 \, d}, \frac{4 \, a \sqrt{-c} d \arctan \left (\frac{\sqrt{-c}}{\sqrt{d x^{2} + c}}\right ) + b c \sqrt{d} \log \left (-2 \, d x^{2} - 2 \, \sqrt{d x^{2} + c} \sqrt{d} x - c\right ) + 2 \,{\left (b d x + 2 \, a d\right )} \sqrt{d x^{2} + c}}{4 \, d}, -\frac{b c \sqrt{-d} \arctan \left (\frac{\sqrt{-d} x}{\sqrt{d x^{2} + c}}\right ) - 2 \, a \sqrt{-c} d \arctan \left (\frac{\sqrt{-c}}{\sqrt{d x^{2} + c}}\right ) -{\left (b d x + 2 \, a d\right )} \sqrt{d x^{2} + c}}{2 \, d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="fricas")

[Out]

[1/4*(b*c*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + 2*a*sqrt(c)*d*log(-(d*x^2 - 2*sqrt(d*x^2 +
 c)*sqrt(c) + 2*c)/x^2) + 2*(b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d, -1/2*(b*c*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^
2 + c)) - a*sqrt(c)*d*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2) - (b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d
, 1/4*(4*a*sqrt(-c)*d*arctan(sqrt(-c)/sqrt(d*x^2 + c)) + b*c*sqrt(d)*log(-2*d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(d)*
x - c) + 2*(b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d, -1/2*(b*c*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - 2*a*sqr
t(-c)*d*arctan(sqrt(-c)/sqrt(d*x^2 + c)) - (b*d*x + 2*a*d)*sqrt(d*x^2 + c))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}} \sqrt{\left (a + b x\right )^{2}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)**2)**(1/2)*(d*x**2+c)**(1/2)/x,x)

[Out]

Integral(sqrt(c + d*x**2)*sqrt((a + b*x)**2)/x, x)

________________________________________________________________________________________

Giac [A]  time = 1.20625, size = 138, normalized size = 0.86 \begin{align*} \frac{2 \, a c \arctan \left (-\frac{\sqrt{d} x - \sqrt{d x^{2} + c}}{\sqrt{-c}}\right ) \mathrm{sgn}\left (b x + a\right )}{\sqrt{-c}} - \frac{b c \log \left ({\left | -\sqrt{d} x + \sqrt{d x^{2} + c} \right |}\right ) \mathrm{sgn}\left (b x + a\right )}{2 \, \sqrt{d}} + \frac{1}{2} \, \sqrt{d x^{2} + c}{\left (b x \mathrm{sgn}\left (b x + a\right ) + 2 \, a \mathrm{sgn}\left (b x + a\right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((b*x+a)^2)^(1/2)*(d*x^2+c)^(1/2)/x,x, algorithm="giac")

[Out]

2*a*c*arctan(-(sqrt(d)*x - sqrt(d*x^2 + c))/sqrt(-c))*sgn(b*x + a)/sqrt(-c) - 1/2*b*c*log(abs(-sqrt(d)*x + sqr
t(d*x^2 + c)))*sgn(b*x + a)/sqrt(d) + 1/2*sqrt(d*x^2 + c)*(b*x*sgn(b*x + a) + 2*a*sgn(b*x + a))